Abstract

Protein kinase Cα (PKCα) is highly expressed in pancreatic cancer. However, the effects of PKCα on Snail and claudin-1, which play crucial roles in epithelial cell polarity during epithelial-mesenchymal transition (EMT), remain unclear. In this study, we investigated the mechanisms of regulation of Snail and claudin-1 via a PKCα signal pathway during EMT in pancreatic cancer cells and in normal human pancreatic duct epithelial cells (HPDEs). By immunostaining, overexpression of PKCα and downregulation of claudin-1 were observed in poorly differentiated human pancreatic cancer tissues and the pancreatic cancer cell line PANC-1. Treatment with the PKCα inhibitor Gö6976 transcriptionally decreased Snail and increased claudin-1 in PANC-1 cells. The PKCα inhibitor prevented upregulation of Snail and downregulation of claudin-1 during EMT induced by transforming growth factor-β1 (TGF-β1) treatment and under hypoxia in PANC-1 cells. The effects of the PKCα inhibitor were in part regulated via an extracellular signal-regulated kinase (ERK) signaling pathway. The PKCα inhibitor also prevented downregulation of the barrier function and fence function during EMT in well-differentiated pancreatic cancer cell line HPAC. In normal HPDEs, the PKCα inhibitor transcriptionally induced not only claudin-1 but also claudin-4, -7 and occludin without a change of Snail. Treatment with the PKCα inhibitor in normal HPDEs prevented downregulation of claudin-1 and occludin by TGF-β1 treatment and enhanced upregulation of claudin-1, -4, -7 and occludin under hypoxia. These findings suggest that PKCα regulates claudin-1 via Snail- and mitogen-activated protein kinase/ERK-dependent pathways during EMT in pancreatic cancer. Thus, PKCα inhibitors may be potential therapeutic agents against the malignancy of human pancreatic cancer cells.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.