Abstract

The signaling pathway connecting membrane depolarization and gene activity in skeletal muscle remains largely unknown. Using transcription elongation (run-on) analysis we have found that electrical stimulation of denervated chick skeletal muscle in vivo rapidly and selectively results in inactivation of acetylcholine receptor (AChR) subunit genes. We have studied the possible involvement of protein kinase C (PKC) in this response and have observed that electrical stimulation increases the activity of PKC in the nucleus by over two orders of magnitude within 10 min; phorbol esters, within minutes after intramuscular application, block AChR subunit genes in the absence of electrical activity; and the activity-triggered gene inactivation is blocked by the protein kinase inhibitor staurosporine or by enzyme depletion resulting from chronic pretreatment of muscle with phorbol esters. We conclude that PKC is an integral component of the pathway coupling membrane excitation and AChR gene control.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call