Abstract
The functional disturbance of microvasculature is recognized as an initiating mechanism that underlies the development of various diabetic complications. Although a causal relationship between microvascular leakage and tissue damage has been well documented in diabetic kidneys and eyes, there is a lack of information regarding the barrier function of coronary exchange vessels in the disease state. The aim of the present study was to evaluate the permeability property of coronary microvessels during the early development of experimental diabetes with a focus on the protein kinase C (PKC)-dependent signaling mechanism. The apparent permeability coefficient of albumin (Pa) was measured in isolated and perfused porcine coronary venules. The administration of high concentrations of D-glucose induced a dose-dependent increase in the Pa value, which was prevented by blockage of PKC with its selective inhibitors bisindolylmaleimide and Goe 6976. More importantly, an elevated basal permeability to albumin was observed in coronary venules at the early onset of streptozotocin-induced diabetes. The hyperpermeability was corrected with bisindolylmaleimide and the selective PKCbeta inhibitor hispidin. Concomitantly, protein kinase assay showed a high PKC activity in isolated diabetic venules. Immunoblot analysis of the diabetic heart revealed a significant subcellular translocation of PKCbetaII and PKCepsilon from the cytosol to the membrane, indicating that the specific activity of these isoforms was preferentially elevated. The results suggest that endothelial barrier dysfunction attributed to the activation of PKC occurs at the coronary exchange vessels in early diabetes.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.