Abstract

Spinocerebellar ataxia type 14 (SCA14) is an autosomal dominant disease caused by mutations in the gene encoding protein kinase C gamma (PKC gamma). We report an SCA14 family with a novel deletion of a termination-codon-containing region, resulting in a missense change and a C-terminal 13-amino-acid extension with increased kinase activity. Notably, one patient with a severe phenotype is the first homozygote for the mutation causing SCA14. We show the novel molecular consequences of increased kinase activities of mutants: aprataxin (APTX), a DNA repair protein causative for autosomal recessive ataxia, was found to be a preferential substrate of mutant PKC gamma, and phosphorylation inhibited its nuclear entry. The phosphorylated residue was Thr111, located adjacent to the nuclear localization signal, and disturbed interactions with importin alpha, a nuclear import adaptor. Decreased nuclear APTX increased oxidative stress-induced DNA damage and cell death. Phosphorylation-resistant APTX, kinase inhibitors, and antioxidants may be therapeutic options for SCA14.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.