Abstract

Abstract Regulatory T-cells (Tregs) prevent autoimmune and alloimmune reactions. Augmenting Treg function may enhance Treg therapies for these diseases. Treg-specific inhibition of protein kinase C-theta (PKC-θ) enhances Treg function. However, it is unclear whether PKC-θ inhibition can boost Treg function in systemic inflammatory conditions. In a mouse model of acute GVHD, we found that Tregs treated with the PKC-θ inhibitor AEB071 reduced GVHD mortality and severity significantly better than DMSO treated Tregs. Compared to DMSO, AEB071 treated Tregs significantly reduced conventional T-cells (Tcon) proliferation on D4 after transplant. Multi-photon microscopy showed that AEB071 treated Tregs significantly increased Tcon velocity and displacement compared to DMSO. Mechanistically, AEB071 augments expression of Neuropilin-1 (Nrp1) and Lymphocyte activation gene 3 (Lag3). Antibody blockade of Nrp1 and Lag3 in transwell suppression assays reduced the effect of AEB071 on Treg function. PKC-θ inhibition also reduces phosphorylation of mTORC2 targets FoxO3a and Akt phospho-site S473, but not mTORC1 targets S6, 4E-BP1 or Akt phospho-site T308. Compared to DMSO, AEB071 treatment significantly increased fatty acid uptake and oxygen consumption rate (OCR). Phosphoproteomic analysis identified a significant alteration in the interaction between PKC-θ and the intermediate filament vimentin after AEB071 treatment, which was confirmed by confocal. Vimentin siRNA treatment also significantly reduces PKC-θ/vimentin interaction, increases Treg function, Nrp1 expression and OCR. In summary, PKC-θ and vimentin modulate multiple aspects of Treg function, and altering these molecules may enhance the efficacy of Treg therapeutics.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call