Abstract
Insulin regulates the expression of multiple hepatic genes through a conserved insulin response sequence (IRS) (CAAAAC/TAA) by an as yet undetermined mechanism. Protein kinase B/Akt (PKB/Akt), a member of the PKA/PKC serine/threonine kinase family, functions downstream from phosphatidylinositol 3'-kinase (PI3K) in mediating effects of insulin on glucose transport and glycogen synthesis. We asked whether PKB/Akt mediates sequence-specific effects of insulin on hepatic gene expression using the model of the insulin-like growth factor binding protein-1 (IGFBP-1) promoter. Insulin lowers IGFBP-1 mRNA levels, inhibits IGFBP-1 promoter activity, and activates PKB/Akt in HepG2 hepatoma cells through a PI3K-dependent, rapamycin-insensitive mechanism. Constitutively active PI3K and PKB/Akt are each sufficient to mediate effects of insulin on the IGFBP-1 promoter in a nonadditive fashion. Dominant negative K179 PKB/Akt disrupts the ability of insulin and PI3K to activate PKB/Akt and to inhibit promoter activity. The IGFBP-1 promoter contains two IRSs each of which is sufficient to mediate sequence-specific effects of insulin, PI3K, and PKB/Akt on promoter activity. Highly related IRSs from the phosphoenolpyruvate carboxykinase and apolipoprotein CIII genes also are effective in this setting. These results indicate that PKB/Akt functions downstream from PI3K in mediating sequence-specific effects of insulin on the expression of IGFBP-1 and perhaps multiple hepatic genes through a conserved IRS.
Highlights
The binding of insulin to its cell surface receptor results in the activation of multiple signaling pathways [1]
We asked whether Protein kinase B/Akt (PKB/Akt) mediates sequence-specific effects of insulin on hepatic gene expression using the model of the insulin-like growth factor binding protein-1 (IGFBP-1) promoter
Related insulin response sequence (IRS) from the phosphoenolpyruvate carboxykinase and apolipoprotein CIII genes are effective in this setting. These results indicate that PKB/Akt functions downstream from Phosphatidylinositol 3Ј-kinase (PI3K) in mediating sequence-specific effects of insulin on the expression of IGFBP-1 and perhaps multiple hepatic genes through a conserved IRS
Summary
The binding of insulin to its cell surface receptor results in the activation of multiple signaling pathways [1]. We asked whether PKB/Akt mediates sequence-specific effects of insulin on hepatic gene expression using the model of the insulin-like growth factor binding protein-1 (IGFBP-1) promoter. Insulin lowers IGFBP-1 mRNA levels, inhibits IGFBP-1 promoter activity, and activates PKB/Akt in HepG2 hepatoma cells through a PI3K-dependent, rapamycin-insensitive mechanism.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.