Abstract
We observed previously that glia maturation factor (GMF), a 17-kDa brain protein, is rapidly phosphorylated in astrocytes following stimulation by phorbol ester, and that protein kinase A (PKA)-phosphorylated GMF is a potent inhibitor of extracellular signal-regulated kinase (ERK) and enhancer of p38; both are subfamilies of mitogen-activated protein (MAP) kinase, suggesting GMF as a bifunctional regulator of the MAP kinase cascades. In the current report, we present evidence that PKA-phosphorylated GMF also promotes (11-fold) the catalytic activity of PKA itself, resulting in a positive feedback loop. Furthermore, GMF phosphorylated by protein kinase C (PKC), but not by casein kinase II or p90 ribosomal S6 kinase, also activates PKA (7-fold). It appears that the mutual augmentation of GMF and PKA, and the stimulating effect of PKC, both serve to maximize the influence of PKA on the regulation of MAP kinase cascades by GMF. Using synthetic peptide fragments containing putative phosphorylation sites of GMF, we demonstrate that PKA is capable of phosphorylating threonine 26 and serine 82, whereas PKC, p90 ribosomal S6 kinase, and casein kinase II, can phosphorylate serine 71, threonine 26, and serine 52, respectively. The generation of various phospho-isoforms of GMF may explain its modulation of signal transduction at multiple locations.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.