Abstract
The simplest cellular model for classical conditioning in the nudibranch mollusk, Hermissenda crassicornis, involves the presynaptic hair cells and postsynaptic photoreceptors. Whereas the cellular mechanisms for postsynaptic photoreceptors have been studied extensively, the presynaptic mechanisms remain uncertain. Here, we determined the phenotype of the voltage-dependent Ca(2+) current in the presynaptic hair cells that may be directly involved in changes in synaptic efficacy during classical conditioning. The Ca(2+) current can be classified as a P-type current because its activation voltage under seawater recording conditions is approximately -30 mV, it showed slow inactivation, and it is reversibly blocked by omega-agatoxin-IVA. The steady-state activation and inactivation curves revealed a window current, and the single-channel conductance is approximately 20 pS. The P-type current was enhanced by cAMP analogs (approximately 1.3-fold), and by forskolin, an activator of adenylyl cyclase (approximately 1.25-fold). In addition, the P-type current showed voltage-dependent facilitation, which is mediated by protein kinase A (PKA). Specifically, the PKA inhibitor peptide [PKI(6-22)amide] blocked the enhancement of the Ca(2+) current produced by conditioning depolarization prepulses. Because neurotransmitter release is mediated by Ca(2+) influx via voltage-gated Ca(2+) channels, and because of the nonlinear relationship between the Ca(2+) influx and neurotransmitter release, we propose that voltage-dependent facilitation of the P-type current in hair cells would produce a robust change in synaptic efficacy.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.