Abstract

Yeast ribosomal protein genes are coordinately regulated as a function of cell growth; RNA levels decrease during amino acid starvation but increase following a carbon source upshift. Binding sites for RAP1, a multifunctional transcription factor, are present in nearly all ribosomal protein genes and are associated with growth rate regulation. We show that ribosomal protein mRNA levels are increased twofold in strains that have constitutively high levels of cyclic AMP-dependent protein kinase (protein kinase A [PKA]) activity. The PKA-dependent induction requires RAP1 binding sites, and it reflects increased transcriptional activation by RAP1. Growth-regulated transcription of ribosomal protein genes strongly depends on the ability to regulate PKA activity. Cells with constitutively high PKA levels do not show the transcriptional decrease in response to amino acid starvation. Conversely, in cells with constitutively low PKA activity, ribosomal protein mRNAs levels are lower and largely uninducible upon carbon source upshift. We suggest that modulation of RAP1 transcriptional activity by PKA accounts for growth-regulated expression of ribosomal protein genes.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call