Abstract

Plasma-assisted ionization is widely used in mass spectrometry; in this study, a low-pressure glow discharge is introduced as a new method to improve the detection of large proteins, and bovine serum albumin (BSA) is used as a protein model. The treatment of analyte, matrix, and the matrix/analyte mixture is evaluated under optimal conditions. Low-pressure radio-frequency capacitively coupled plasma (RF-CCP) treatment is utilized in the sample preparation step of matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) to enhance the protein MALDI ion signal. Plasma treatment can be an effective tool for enhancing the non-covalent binding of the analyte with the matrix, incorporation of the analyte into the matrix, production of matrix/analyte crystals, and analyte protonation through plasma activation, resulting in an improved MALDI ion signal. Fourier-transform infrared (FTIR) spectroscopy allows us to distinguish between the functional groups of plasma-treated and control samples. In addition, optical emission spectroscopy (OES) determines the plasma species, and zeta potential analysis characterizes the potential difference between plasma-treated and control samples before MALDI-TOF MS analysis. Plasma-treated BSA can provide a five-times enhancement of ion intensity. The combination of the plasma-treated analyte with the plasma-treated matrix leads to an increase in the ion intensity by a factor of 14. Low-pressure glow discharge plasma treatment greatly enhances MALDI ion signals, with a noticeable increase in incorporation, co-crystallization, protonation, and the concentration of the sample functional groups.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.