Abstract

AbstractOur recent studies revealed that the inositol phosphatase Src homology 2 (SH2) domain-containing inositol phosphatase (SHIP) is phosphorylated and associated with Shc exclusively under negative signaling conditions in B cells, which is due to recruitment of the SHIP SH2 domain to the FcγRIIb. In addition, we reported that SHIP-Shc interaction involves both SHIP SH2 and Shc phosphotyrosine binding domains. These findings reveal a paradox in which the single SH2 domain of SHIP is simultaneously engaged to two different proteins: Shc and FcγRIIb. To resolve this paradox, we examined the protein interactions of SHIP. Our results demonstrated that isolated FcγRIIb contains SHIP but not Shc; likewise, Shc isolates contain SHIP but not FcγRIIb. In contrast, SHIP isolates contain both proteins, revealing two separate pools of SHIP: one bound to FcγRIIb and one bound to Shc. Kinetic studies reveal rapid SHIP association with FcγRIIb but slower and more transient association with Shc. Affinity measurements using a recombinant SHIP SH2 domain and phosphopeptides derived from FcγRIIb (corresponding to Y273) and Shc (corresponding to Y317) revealed an approximately equal rate of binding but a 10-fold faster dissociation rate for FcγRIIb compared with Shc phosphopeptide and yielding in an affinity of 2.1 μM for FcγRIIb and 0.26 μM for Shc. These findings are consistent with a model in which SHIP transiently associates with FcγRIIb to promote SHIP phosphorylation, whereupon SHIP binds to Shc and dissociates from FcγRIIb.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call