Abstract

BackgroundIn the post-genomic era, a central and overarching question in the analysis of protein-protein interaction networks continues to be whether biological characteristics and functions of proteins such as lethality, physiological malfunctions and malignancy are intimately linked to the topological role proteins play in the network as a mathematical structure. One of the key features that have implicitly been presumed is the existence of hubs, highly connected proteins considered to play a crucial role in biological networks. We explore the structure of protein interaction networks of a number of organisms as metric spaces and show that hubs are non randomly positioned and, from a distance point of view, centrally located.ResultsBy analysing how the human functional protein interaction network, the human signalling network, Saccharomyces cerevisiae, Arabidopsis thaliana and Escherichia coli protein-protein interaction networks from various databases are distributed as metric spaces, we found that proteins interact radially through a central node, high degree proteins coagulate in the centre of the network, and those far away from the centre have low degree. We further found that the distribution of proteins from the centre is in some hierarchy of importance and has biological significance.ConclusionsWe conclude that structurally, protein interaction networks are mathematical entities that share properties between organisms but not necessarily with other networks that follow power-law. We therefore conclude that (i) if there are hubs defined by degree, they are not distributed randomly; (ii) zones closest to the centre of the network are enriched for critically important proteins and are also functionally very specialised for specific 'house keeping’ functions; (iii) proteins closest to the network centre are functionally less dispensable and may present good targets for therapy development; and (iv) network biology requires its own network theory modelled on actual biological evidence and that simply adopting theories from the social sciences may be misleading.

Highlights

  • In the post-genomic era, a central and overarching question in the analysis of protein-protein interaction networks continues to be whether biological characteristics and functions of proteins such as lethality, physiological malfunctions and malignancy are intimately linked to the topological role proteins play in the network as a mathematical structure

  • In the post-genomic era, an overarching question in the analysis of protein-protein interaction (PPI) networks continues to be whether biological characteristics and functions of proteins such as lethality, physiological malfunctions and malignancy are intimately linked to the topological role proteins play in the network [1,2]

  • While the Human Functional Protein Interaction Network (HPFIN), the Human Signalling Network (HSN) and multiple sources of Saccharomyces cerevisiae, Arabidopsis thaliana and Escherichia coli protein interaction networks (PINs) all appear to be power-law distributed as expected, we modelled each one of the PINs as metric spaces in order to identify each network’s topological centre(s) and to classify remaining proteins into ‘zones’ based on graph theoretic distance from the central protein

Read more

Summary

Introduction

In the post-genomic era, a central and overarching question in the analysis of protein-protein interaction networks continues to be whether biological characteristics and functions of proteins such as lethality, physiological malfunctions and malignancy are intimately linked to the topological role proteins play in the network as a mathematical structure. In the post-genomic era, an overarching question in the analysis of protein-protein interaction (PPI) networks continues to be whether biological characteristics and functions of proteins such as lethality, physiological malfunctions and malignancy are intimately linked to the topological role proteins play in the network [1,2]. Almost universally, it has been assumed that these hubs are proteins having a high degree (number of interactions) and that are randomly placed in the network and have important functional roles [4,7,8,9,10]. It is appealing to give substantial import to these metrics because some of them

Methods
Results
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.