Abstract
Infectious diseases in humans appear to be one of the most primary public health issues. Identification of novel disease-associated proteins will furnish an efficient recognition of the novel therapeutic targets. Here, we develop a Graph Convolutional Network (GCN)-based model called PINDeL to identify the disease-associated host proteins by integrating the human Protein Locality Graph and its corresponding topological features. Because of the amalgamation of GCN with the protein interaction network, PINDeL achieves the highest accuracy of 83.45% while AUROC and AUPRC values are 0.90 and 0.88, respectively. With high accuracy, recall, F1-score, specificity, AUROC, and AUPRC, PINDeL outperforms other existing machine-learning and deep-learning techniques for disease gene/protein identification in humans. Application of PINDeL on an independent dataset of 24320 proteins, which are not used for training, validation, or testing purposes, predicts 6448 new disease-protein associations of which we verify 3196 disease-proteins through experimental evidence like disease ontology, Gene Ontology, and KEGG pathway enrichment analyses. Our investigation informs that experimentally-verified 748 proteins are indeed responsible for pathogen-host protein interactions of which 22 disease-proteins share their association with multiple diseases such as cancer, aging, chem-dependency, pharmacogenomics, normal variation, infection, and immune-related diseases. This unique Graph Convolution Network-based prediction model is of utmost use in large-scale disease-protein association prediction and hence, will provide crucial insights on disease pathogenesis and will further aid in developing novel therapeutics.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.