Abstract

Protein intake is considered important in the maintenance of muscle health in ageing. However, both the source and mealtime distribution of protein might affect the intake of protein and its effect on muscle protein synthesis. In this study, protein intake, mealtime distribution of protein, and seafood consumption were assessed in 92 older adults (aged 65+), and associations with physical performance (Short Physical Performance Battery (SPPB)), grip strength and gait speed were assessed in a multiple linear regression analysis. The participants had a mean age of 73 ± 8.9 years. Mean protein intake was 1.1 g/kg body weight. Protein intake was well distributed, with coefficient of variance between meals (CV meals) 0.6 ± 0.3. However, dinner had the highest protein intake. No associations were found between the nutrition factors and physical performance or strength; however, this result might have been caused by a ceiling effect in the chosen test batteries, as the mean score on SPPB was 10.3 ± 2.7, and 48.9% of the participants reached the top score of 12 points. Mean grip strength was 44.4 ± 9.4 kg (men) and 26.2 ± 6.8 kg (women). Mean gait speed was 1.0 ± 0.3 m/s. The interaction analysis suggests that there might be gender differences in the effect of seafood consumption on gait speed.

Highlights

  • For an older person to preserve good physical function while ageing, the maintenance of muscle mass, muscle function, and muscle strength is of importance

  • No associations were found between the nutrition factors and physical performance or strength; this result might have been caused by a ceiling effect in the chosen test batteries, as the mean score on Short Physical Performance Battery (SPPB) was 10.3 ± 2.7, and 48.9% of the participants reached the top score of 12 points

  • We found no association between coefficient of variation (CV) meals or protein intake, and physical performance or strength

Read more

Summary

Introduction

For an older person to preserve good physical function while ageing, the maintenance of muscle mass, muscle function, and muscle strength is of importance. Sarcopenia is defined by a loss of muscle mass, strength, and function [1], and is considered a frequent cause of frailty [2]. Frailty is defined as the presence of three or more of the five criteria described by Fried: weight loss, exhaustion, weakness, slowness and inactivity [3]. The Sarcopenia Definition and Outcomes Consortium (SDOC) recommended including weakness (low grip strength) and slowness (slow gait speed) in the definition of sarcopenia [4], and the revised consensus statement from the European Working Group on Sarcopenia in Older People defines low muscle strength as an independent indicator of probable sarcopenia [5].

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.