Abstract

Abstract. Food selection behaviour, food utilization efficiency and growth performance of a generalist insect, the gypsy moth (Lymantria dispar (L.), Lepidoptera: Lymantriidae), were examined with respect to variation in food nitrogen concentration. The results suggest that gypsy moth do not suffer physiologically and in fact may benefit from intraplant variation by selective feeding. When provided with diet cubes containing identical nitrogen concentrations, control larvae tended to consume food from a single cube. This behaviour contrasted with that of larvae provided cubes differing in nitrogen concentration. These larvae tended to consume more from the high nitrogen cube, but allocated feeding more evenly among diet cubes than did control larvae. Overall, larvae mixed foods so as to obtain a mean concentration of 2.9‐3.2% nitrogen, a concentration assumed to approximate the ’intake target’. Larvae confined to single nitrogen concentrations mitigated the impact of imbalanced diets on body composition via both pre‐ingestive and post‐ingestive compensation. When confined to a specific nitrogen concentration, larvae adjusted their intake to the point of best compromise. In this case, this was the geometrically closest point to the estimated intake target. Larvae with a choice of foods that deviated more than ±1% from each other in nitrogen concentration grew as well as or better than larvae without a choice but given identical mean nitrogen concentrations. These results demonstrate that selectivity and nitrogen consumption by gypsy moth larvae are altered according to the particular choices available. Insects may benefit from intraplant variation in food quality because such variation provides the opportunity to choose foods and mix them in ways that permit close matching with the intake target. Variation may be particularly important to insects which must offset changing nutritional demands.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.