Abstract

Cellular metabolism is linked to epigenetics, but the biophysical effects of metabolism on chromatin structure and implications for gene regulation remain largely unknown. Here, using a broken tricarboxylic acid (TCA) cycle and disrupted electron transport chain (ETC) exemplified by succinate dehydrogenase subunit C (SDHC) deficiency, we investigated the effects of metabolism on chromatin architecture over multiple distance scales [nucleosomes (~102 bp), topologically-associated domains (TADs; ~105 – 106 bp), and chromatin compartments (⁓106 – 108 bp)]. Metabolically-driven hyperacylation of histones led to weakened nucleosome positioning in multiple types of chromatin, and we further demonstrate that lysine acylation directly destabilizes histone octamer-DNA interactions. Hyperacylation of cohesin subunits correlated with decreased mobility on interphase chromatin and increased TAD boundary strength, suggesting that cohesin is metabolically regulated. Erosion of chromatin compartment distinctions reveals metabolic regulation of chromatin liquid-liquid phase separation. The TCA cycle and ETC thus modulate chromatin structure over multiple distance scales.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call