Abstract

Background: Dietary proteins are known for their wide range of nutritional, functional and biological properties. Although the total amount of proteins may be obtained from mixtures, its “availability” for absorption in the gut is in many cases quite uncertain or even varies for the same food depending on processing conditions, the presence of other components, and so on. Methods: To obtain accurate protein hydrolysate absorption data, we have developed a small intestine model (SIM) to test them. Results: The results indicated that the protein hydrolysates were absorbed rapidly during the first 15 min, and then decreased to 90 min, then they were absorbed again from 90 min to the endpoint. The protein absorption was also affected by the protein processing method used. The Enzyme + Ultrasound (EU) processing method group had a higher absorption rate than the Enzyme (E) processing method group, and the absorption of the Enzyme + Artificial gastric juice processing method (EH) and Enzyme + Ultrasound + Artificial gastric juice processing method (EUH) groups was reduced compared to the E group alone. The amino acid analysis results showed that the amino acids were reduced and absorbed by our SIM in almost all groups except for cysteine and methionine. In general, the Pearson relation value of the amino acid contents between before SIM and after SIM was 0.887, which indicated that single amino acid absorption was mainly related to its content in the whole amino acids. The single amino acid absorption ratio among different groups also displayed differences, which ranged from 31% to 46% (E group from 39% to 42%; EU group from 40% to 47%; EH group from 31% to 39%; EUH group from 35% to 41%). Conclusions: The protein hydrolysates’ varied from startpoint to endpoint, and the protein absorption was affected by processing method.

Highlights

  • Dietary proteins are known for their wide range of nutritional, functional and biological properties [1]

  • Bioactive peptide or protein hydrolysates absorption could occur in the gastrointestinal tract (GIT) regulation after they enter the body, and regulate the whole hormone system resulting in induced satiety, delayed gastric emptying, increased gastrointestinal transit time, and changed food intake, affecting digestion and absorption again [9]

  • Before protein absorption changes are tested, we should first confirm the in vivo food running speed in the intestine

Read more

Summary

Introduction

Dietary proteins are known for their wide range of nutritional, functional and biological properties [1]. When studying the effect of bioactive peptide compounds in our organism, it is important to verify the rate, extent, and location of protein hydrolysis within the human gastrointestinal tract (GIT) and ensure the active form reaches the target organ(s). For this purpose, stability to digestion has to be assessed and, if it is absorbed, it is important to evaluate the distribution, metabolism, and excretion [2,5]. The Enzyme + Ultrasound (EU) processing method group had a higher absorption rate than the Enzyme (E) processing method group, and the absorption of the Enzyme + Artificial gastric juice processing method (EH) and Enzyme + Ultrasound + Artificial gastric juice processing method (EUH)

Methods
Results
Discussion
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.