Abstract

A new strategy for the preparation of protein-functionalized polymer brushes is reported, which is based on a combination of surface-initiated atom transfer radical polymerization (ATRP), p-nitrophenyl chloroformate activation of the surface hydroxyl groups, and subsequent O(6)-benzylguanine (BG) functionalization. The BG-functionalized brushes are used to chemoselectively immobilize O(6)-alkylguanine-DNA-alkyltransferase (AGT) fusion proteins with a defined orientation and surface density. These protein-modified polymer brushes are attractive candidates for the development of protein microarrays.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.