Abstract
The Gene Ontology (GO) is a formal, axiomatic theory with over 100,000 axioms that describe the molecular functions, biological processes and cellular locations of proteins in three subontologies. Predicting the functions of proteins using the GO requires both learning and reasoning capabilities in order to maintain consistency and exploit the background knowledge in the GO. Many methods have been developed to automatically predict protein functions, but effectively exploiting all the axioms in the GO for knowledge-enhanced learning has remained a challenge. We have developed DeepGO-SE, a method that predicts GO functions from protein sequences using a pretrained large language model. DeepGO-SE generates multiple approximate models of GO, and a neural network predicts the truth values of statements about protein functions in these approximate models. We aggregate the truth values over multiple models so that DeepGO-SE approximates semantic entailment when predicting protein functions. We show, using several benchmarks, that the approach effectively exploits background knowledge in the GO and improves protein function prediction compared to state-of-the-art methods.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.