Abstract
Proteins may be considered as polypeptides large enough to have a well-defined tertiary, or three-dimensional structure. In aqueous media, this structure is typically one in which polar and charged amino acid residues are on the surface while hydrophobic residues tend to be sequestered in the core and reasonably inaccessible to the aqueous environment. Proteins that are not normally found free in aqueous media, such as membrane proteins and apolipoproteins, can have tertiary structures that deviate from this model. In general, the biological activity of proteins requires the preservation of their tertiary structure, and this sets more limits upon the chromatography than is true of peptides. In proteomics, the concern is with which proteins are present and in what quantity rather than maintaining biological activity. Such applications are freer to use mobile and stationary phases that denature protein structure. However, considerations of solubility and recovery may still set more limits on the chromatography than is the case with peptides.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Similar Papers
More From: Advances in experimental medicine and biology
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.