Abstract

AbstractMany proteins have been experimentally observed to exhibit a force-extension behavior with a characteristic repeating pattern of a nonlinear rise in force with imposed displacement to a peak, followed by a significant force drop upon reaching the peak (a “saw-tooth” profile) due to successive unfolding of modules during extension. This behavior is speculated to play a governing role in biological and mechanical functions of natural materials and biological networks composed of assemblies of such protein molecules. In this paper, a constitutive model for the finite deformation stress-strain behavior of crosslinked networks of modular macromolecules is developed. The force-extension behavior of the individual modular macromolecule is represented using the Freely Jointed Chain (FJC) statistical mechanics model together with a two-state theory to capture unfolding. The single molecule behavior is then incorporated into a formal continuum mechanics framework to construct a constitutive model. Simulations illustrate a relatively smooth “yield”-like stress-strain behavior of these materials due to activate unfolding in these microstructures.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.