Abstract

Excess sludge contains a high amount of protein, which can be recovered to prepare protein foaming agents and other products with high added value. Enzymatic hydrolysis (EH) is a promising technology for the recovery of protein from excess sludge, and ultrasound has been identified as a potential method to assist in sludge disintegration. Ultrasonic pretreatment was combined with alkaline protease hydrolysis to extract protein from excess sludge produced by A2/O treatment (S1) and an oxidation ditch treatment (S2), and the extraction effects and changes in sludge dewatering performance were studied. The effects of the six factors ultrasonic power density, ultrasonication time, enzyme dose, pH, hydrolysis temperature and hydrolysis time were analyzed. The results showed that the ultrasound-enhanced enzymatic method could effectively extract sludge protein. Although the extraction efficiencies for the different municipal sludges were different, their extraction conditions were relatively similar. Considering the protein extraction rate and sludge dewatering performance, the selected extraction conditions were as follows: ultrasonic power density, 1W/mL; ultrasonication time, 20min; enzyme dose, 3500U/g; pH11; hydrolysis temperature, 60°C; and hydrolysis time, 3h. Under these conditions, the protein extraction rate (Rp) of S1 and S2 reached 55.9% and 52.3%, respectively. Moreover, the improvement in sludge dewatering performance (Dw) of S1 and S2 was 49.5% and 52.4%, respectively. Comparison of the protein, polypeptide, and amino acid contents obtained from ultrasound-assisted enzymatic hydrolysis (UEH), EH, and ultrasonic hydrolysis (UH) further demonstrated the beneficial effect of ultrasound application on enzymatic hydrolysis.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.