Abstract
Verticillium wilt, a soilborne disease caused by Verticillium dahliae (V. dahliae), can severely affect the yields of Solanaceae crops. In a previous study, it was observed in Solanum torvum (S. torvum) that protein phosphatase 5 (PP5) was induced by V. dahliae infection. To elucidate the function of PP5 more clearly, this study cloned an StPP5 cDNA from S. torvum by PCR. The cDNA contained an ORF of 1458 bp long encoding a putative protein of 485 amino acid residues with a predicted molecular mass of 54.63 kDa and a theoretical isoelectric point of 5.66. StPP5 protein contained a conserved PP domain and showed high similarity to other homologous members of the PP5 family from various plant species. The expression of StPP5 gene was upregulated after V. infection and reached its maximum value at 24 h in leaves. In order to clarify the role of StPP5, four transgenic tobacco plants expressing StPP5 were generated through Agrobacterium-mediated transformation and identified by PCR. In vitro culture assay showed that the growth of V. dahliae in PDA medium containing proteins extracted from the leaves of transgenic tobacco line P6 was inhibited, whose inhibition rate was 55.1%, higher than the non-transgenic control. These results indicated that StPP5 might be involved in plant defense against V. dahliae infection.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.