Abstract

Loss of fragile histidine triad (Fhit) expression is often associated with human malignancies, and Fhit functions as a tumor suppressor in controlling cell growth and apoptosis, although specific signal pathways are still undefined. We have used a proteomic approach to define proteins in the Fhit-mediated tumor suppression pathway. Because substitution of Tyr(114) (Y114) with phenylalanine (Y114F) diminishes Fhit functions, we did protein expression profiling to identify proteins differentially expressed in Fhit-negative H1299 lung cancer cells infected with wild-type (Ad-FHIT-wt) and Y114 mutant FHIT-expressing (Ad-FHIT-Y114F) adenoviruses. Among 12 distinct proteins that exhibited 4-fold differences in expression on comparison of the two infected cell lysates, cyclophilin A, the intracellular reporter of the immunosuppressive drug cyclosporine A, showed a remarkably decreased protein level in cells infected with Ad-FHIT-wt versus Ad-FHIT-Y114F. Conversely, loss of Fhit expression resulted in increased cyclophilin A expression in mouse tissues and cell lines. Restoration of Fhit expression led to down-regulated cyclophilin A protein expression and subsequently prevented cyclophilin A-induced up-regulation of cyclin D1, Cdk4, and resultant cell cycle progression (G(1)-S transition), which was independent of Ca(2+)/calmodulin-dependent kinase inhibitor, KN-93. Interestingly, Fhit down-modulation of phosphatase activity of calcineurin, which controls cyclin D1/Cdk4 activation, was reversed by cyclophilin A treatment in a concentration-dependent manner, a reversal that was inhibited by additional cyclosporine A treatment. Thus, cyclophilin A is a downstream target in Fhit-mediated cessation of cell cycle progression at late G(1) phase. Elucidation of the protein effectors of Fhit signaling may lead to identification of targets for lung cancer therapy.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.