Abstract

BackgroundTear film (TF) helps maintain and protect ocular function against damage to the ocular surface. Proteins are one of its main constituents, whose expression pattern can be used as a biomarker of ocular changes and systemic diseases. The aim of this study was to evaluate the expression of proteins in the TF of domestic cats before and after infection with Toxoplasma gondii, in the phases of acute infection and chronicity. Twelve healthy cats received orally homogenized brain matter obtained from mice inoculated with T. gondii oocysts, strain ME49. Cat feces were collected daily from the third day after infection to assess the release of oocysts. TF samples were obtained from cats, by Schirmer’s Tear Test 1, on day 0 (before infection), day 5 after infection (acute phase of infection, with maximum peak release of oocysts in feces) and on day 21 after infection (start of chronic phase, 7 days after total absence of oocyst release in feces). Tear samples were also submitted to proteomic analysis in a Q-Tof-Premier mass spectrometer.ResultsA total of 37 proteins with scores equal to or greater than 100 were identified on D0, followed by 36 on D5 and 42 on D21. Of these, 27 were common to D0 and D5, 33 to D0 and D21, 27 to D5 and D21, and 26 were common to the three groups, totaling 54 proteins. The most abundant proteins were lipocalin allergen Fel d, serum albumin, aldehyde dehydrogenase, lactoperoxidase and lactotransferrin. There was no significant difference in the abundance of proteins found on D0 and D5, but there was a statistical difference between D0 and D21 for ACT1_AEDAE, CERU_HUMAN and GELS_HUMAN. Regarding D5 and D21, there were significant differences for KV1_CANLF, LAC_PIG, TRFL_PIG, ACT1_AEDAE, CERU_HUMAN, GELS_HUMAN and OVOS2_HUMAN.ConclusionsThe main proteins identified in the TF of domestic cats are similar to those found in humans and other animal species. Most are part of the ocular surface defense system against injuries. The most expressed proteins in animals in the chronic phase of T. gondii infection are associated with the immune response to the parasite.

Highlights

  • Tear film (TF) helps maintain and protect ocular function against damage to the ocular surface

  • The principal component analysis (PCA) graph (Fig. 2) revealed that the accumulation of proteins expressed on day 21 (D21) was grouped according to the day of collection, indicating a distinct diversity in relation to day day 0 (D0) and a proximity to day day 5 (D5)

  • There was a statistical difference between D0 and D21 for the following proteins: ACT1_AEDAE, CERU_HUMAN and GELS_HUMAN, all more abundant on D21; these proteins were above the fold change (Fig. 3A)

Read more

Summary

Introduction

Tear film (TF) helps maintain and protect ocular function against damage to the ocular surface. Guedes et al BMC Veterinary Research (2021) 17:386 surface, in turn, is constantly exposed to external and internal factors that can generate changes in its homeostasis, such as ultraviolet radiation and environmental pollutants, which generate oxidative stress [3], in addition to ocular and systemic pathologies [2]. In this context, the TF is of fundamental importance for the maintenance of a healthy ocular surface, as well as for defense against damage. Tissue constituents such as proteins are essential for the functioning of these mechanisms [2]

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call