Abstract

Streptococcus mutans, a major causal agent of dental caries, functions in nature as a component of a biofilm on teeth (dental plaque) and yet very little information is available on the physiology of the organism in such surface-associated communities. As a consequence, we undertook to examine the synthesis of proteins by planktonic and biofilm cells growing in a biofilm chemostat at pH 7.5 at a dilution rate of 0.1 h −1 (mean generation time=7 h). Cells were incubated with 14C-labelled amino acids, the proteins extracted and separated by two-dimensional electrophoresis followed by autoradiography and computer-assisted image analysis. Of 694 proteins analysed, 57 proteins were enhanced 1.3-fold or greater in biofilm cells compared to planktonic cells with 13 only expressed in sessile cells. Diminished protein expression was observed with 78 proteins, nine of which were not expressed in biofilm cells. The identification of enhanced and diminished proteins by mass spectrometry and computer-assisted protein sequence analysis revealed that, in general, glycolytic enzymes involved in acid formation were repressed in biofilm cells, while biosynthetic processes were enhanced. The results show that biofilm cells possess novel proteins, of as yet unknown function, that are not present in planktonic cells.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.