Abstract

Currently, atherosclerosis control is important to prevent future heart attacks or strokes. Protein-enriched extract (PE) from housefly maggots (Musca domestica) can inhibit the development of atherosclerosis partially through its antioxidant effects. Whether PE exerts other anti-atherosclerosis functions remains unclear. Here, PE was found to simultaneously promote cholesterol metabolism effects in apolipoprotein E knockout (ApoE-/- ) mice. Bile acid synthesis plays a key role in regulating cholesterol homeostasis in atherosclerosis. Whether PE alleviates atherosclerosis by promoting bile acid production and consequent cholesterol consumption was further explored. First, 8-week-old male ApoE-/- mice were recruited and fed on a cholesterol-enriched diet. After 8 weeks, these mice were divided into three groups and received gavage administration of PE, simvastatin, and saline for another 8 weeks. Atherosclerosis severity was then assessed. Real-time quantitative polymerase chain reactionand western blot were employed to determine the expression of hepatic ATP-binding cassette transporter A1 (ABCA1), liver X receptor α (LXRα), and peroxisome proliferator-activated receptor-γ (PPAR-γ). Serum levels of high-density lipoprotein-cholesterol (HDL), low-density lipoprotein-cholesterol (LDL), and total cholesterol (TC) were determined by enzyme-linked immunoassay. Results revealed that PE reversed the formation of atherosclerotic lesion; increased the expression of PPAR-γ, LXRα, and ABCA1; increased the amount of bile flow and total bile acid; reduced the serum level of LDL and TC; and increased the level of HDL. In conclusion, enhancement on bile acid production and consequent cholesterol consumption may partially contribute to the anti-atherosclerotic effects of PE. The reversal of PPARγ-LXRα-ABCA1 signaling pathway may be involved in this process.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.