Abstract
This article reviews the technical advances in antibody engineering and the clinical applications of these molecules. Recombinant DNA technology facilitates the construction and expression of engineered antibodies. These novel molecules are designed to meet specific applications. Although genomic and cDNA cloning have been used widely in the past to isolate the relevant antibody V domains, at present, the PCR-based cloning is the preferred system. Bacterial and mammalian expression systems are used commonly for the production of antibodies, antibody fragments, and antibody fusion proteins. A range of chimeric antibodies with murine V domains joined to C regions from human and other species have been produced and found to exhibit the expected binding characteristics and effector functions. Humanized antibodies have been developed to minimize the HAMA response, and bifunctional immunoglobulins are being used in tumor therapy and diagnosis. Single chain antibodies and fusion proteins with antibody specificities jointed to nonimmunoglobulin sequences provide a source of antibody-like molecules with novel properties. The potential applications of minimal recognition units and antigenized antibodies are described. Combinatorial libraries produced in bacteriophage present an alternative to hybridomas for the production of antibodies with the desired antigen binding specificities. Future developments in this field are discussed also.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.