Abstract
The calcium regulatory protein calmodulin (CaM) plays a role as an on-off switch in the activation of many enzymes and proteins. CaM has a dumbbell shaped structure with two folded domains, which are connected by a flexible linker in solution. The calmodulin-binding domains of the target proteins are contained in 20 residue long amino acid sequences, that share no obvious amino acid sequence homology. In this contribution, we discuss the features of CaM, which allow it to be rather promiscuous, and bind effectively to all these distinct domains. In particular, we describe the role of the methionine-rich hydrophobic surfaces of the protein in providing a malleable and sticky surface for binding many hydrophobic peptides. The enzyme activation properties of various Met --> Leu mutants of CaM are discussed. In addition, the role of the flexible linker region that connects the two domains is also analyzed. Finally, we describe various NMR and spectroscopic experiments that aid in determining the CaM-bound structures of synthetic peptides containing various CaM-binding domains. All structures analyzed to date are alpha-helical when bound to CaM, and they interact with CaM only through amino acid sidechains. This form of protein-protein interaction is rather unique, and may contribute to CaM's capacity to bind effectively to such a wide range of distinct partners.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.