Abstract

Malnutrition modifies resistance to infection by impairing a number of physiological processes including hematopoesis and the immune response. In this study, we examined the production of Interleukin-4 (IL-4) and IL-10 in response to lipopolysaccharide (LPS) and also evaluated the cellularity of the blood, bone marrow, and spleen in a mouse model of protein-energy malnutrition. Two-month-old male Swiss mice were subjected to protein-energy malnutrition (PEM) with a low-protein diet (4%) as compared to the control diet (20%). When the experimental group lost approximately 20% of their original body weight, the animals from both groups received 1.25 microg of LPS intravenously. The cells in the blood, bone marrow, and spleen were counted, and circulating levels of IL-4 and IL-10 were evaluated in animals stimulated with LPS. Cells from the spleen, bone marrow, and peritoneal cavity of non-inoculated animals were collected for culture to evaluate the production of IL-4 and IL-10 after stimulating these cells with 1.25 microg of LPS in vitro. Malnourished animals presented leucopenia and a severe reduction in bone marrow, spleen, and peritoneal cavity cellularity before and after stimulus with LPS. The circulating levels of IL-10 were increased in malnourished animals inoculated with LPS when compared to control animals, although the levels of IL-4 did not differ. In cells cultured with LPS, we observed high levels of IL-10 in the bone marrow cells of malnourished animals. These findings suggest that malnourished mice present a deficient immune response to LPS. These alterations may be partly responsible for the immunodeficiency observed in these malnourished mice.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call