Abstract

Biodegradable polymer double-wall microspheres (DWMS) are promising vehicles for macromolecular therapeutics such as proteins and peptides. Using precision particle fabrication (PPF) technology, uniform DWMS with outer diameter approximately 55 μm were fabricated comprising poly(lactide-co-glycolide) cores encapsulating bovine serum albumin (BSA) and approximately 10 μm thick, drug-free, poly(lactic acid) (PLA) shells of varying PLA molecular weight. Also, monolithic single-wall microspheres (SWMS) were fabricated to mimic the BSA-loaded core. The use of relatively fast-extracting ethyl acetate and slowly extracting dichloromethane as shell- and core-phase solvents, respectively, was found to produce DWMS with well-defined core-shell structure, high BSA encapsulation efficiency, and the desired localization of protein in the particle core. Initial protein distribution, particle erosion, and in vitro protein release from DWMS and SWMS were examined. The presence of a BSA-free shell in DWMS decreased the protein release rate and extended the duration of release from approximately 50 days to 70-80 days, demonstrating the capacity of such DWMS to provide enhanced control of protein delivery rates.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.