Abstract

AbstractElectron transport (ETp) across met‐myoglobin (m‐Mb), as measured in a solid‐state‐like configuration between two electronic contacts, increases by up to 20 fold if Mb is covalently bound to one of the contacts, a Si electrode, in an oriented manner by its hemin (ferric) group, rather than in a non‐oriented manner. Oriented binding of Mb is achieved by covalently binding hemin molecules to form a monolayer on the Si electrode, followed by reconstitution with apo‐Mb. We found that the ETp temperature dependence (>120 K) of non‐oriented m‐Mb virtually disappears when bound in an oriented manner by the hemin group. Our results highlight that combining direct chemical coupling of the protein to one of the electrodes with uniform protein orientation strongly improves the efficiency of ET across the protein. We hypothesize that the behavior of reconstituted m‐Mb is due to both strong protein–substrate electronic coupling (which is likely greater than in non‐oriented m‐Mb) and direct access to a highly efficient transport path provided by the hemin group in this configuration.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.