Abstract

Structure-encoded conformational dynamics are crucial for biomolecular functions. However, there is insufficient evidence to support the notion that dynamics play a role in guiding protein-nucleic acid interactions. Here, we show that protein-DNA docking orientation is a function of protein intrinsic dynamics, but the binding site itself does not display unique patterns in the examined spectrum of motions. This revelation is made possible by a novel technique that locates "dynamics interfaces" in proteins across which protein parts are anticorrelated in their slowest dynamics. A striking statistic is that such interfaces intersect the DNA in 97% of the 104 examined cases. These findings were then used to screen decoys generated by rigid-body docking of DNA molecules onto DNA-binding proteins. Using our method, the chance to discern near-native poses from non-native decoys increased by 2.5- and 1.6-fold, as compared to a random guess and methods based on surface complementarity, respectively. Hence, dynamically allowed protein-DNA docking orientations can work as new filters to cull and rerank docking poses and therefore enhance the predictability of DNA-binding sites that themselves do not have distinct dynamics features. Computer software implementing the method can be accessed via http://dyn.life.nthu.edu.tw/IDD/DNA.htm .

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.