Abstract

The temperature‐dependent protein dynamical transition is investigated using the Instanteous Normal mode analysis (INM) and molecular dynamics (MD) simulation of crystalline myoglobin and Toxin II. The onset of anharmonic dynamics in myoglobin is observed at 150 K, far below the much‐studied solvent‐activated dynamical transition at 220 K. A significant fraction of methyl groups exhibit nanosecond anharmonic rotational jump diffusion at 150 K indicating the essential role of methyl dynamics in the low‐temperature onset of anharmonic protein dynamics. The methyl groups that exhibit many rotational excitations are located near xenon cavities, suggesting that cavities in proteins act as activation centers of anharmonic dynamics. INM analysis of Toxin II indicates the presence of non‐zero barrier‐crossing, diffusive degrees of freedom accessible to the protein below the dynamical transition. The number of these diffusive degrees of freedom increases abruptly at the dynamical transition. In summary, the presen...

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call