Abstract

This paper considers how enzymes that catalyze reactions at specific DNA sites have been engineered to overcome the problem of competitive inhibition by excess nonspecific binding sites on DNA. The formation of a specific protein-DNA recognition complex is discussed from both structural and thermodynamic perspectives, and contrasted with formation of nonspecific complexes. Evidence (from EcoRI and BamHI endonucleases) is presented that a wide variety of perturbations of the DNA substrate alter binding free energy but do not affect the free energy of activation for the chemical step; that is, many energetic factors contribute equally to the recognition complex and the transition-state complex. This implies that the specific recognition complex bears a close resemblance to the transition-state complex, such that very tight binding to the recognition site on the DNA substrate does not inhibit catalysis, but instead provides energy that is efficiently utilized along the path to the transition state. It is suggested that this view can be usefully extended to "noncatalytic" site-specific DNA-binding proteins like transcriptional activators and general transcription factors.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.