Abstract

At physiological glucose concentrations, isolated pancreatic islets release a minor portion of their newly synthesized insulin and precursors in a phase of secretion which is largely complete by 4 h of chase. Discharge during this period can be amplified by secretagogues, yet is not abolished by conditions which fully suppress regulated release from dense core secretory granules. The ability to stimulate the secretion and the biochemical profile of released proinsulin-related peptides indicate that secretion during this period originates from immature granules. The stoichiometry of release of labeled C-peptide:insulin during this phase is 1:1 at high glucose concentrations. However, at physiologic or low concentrations, C-peptide is released in molar excess of insulin as if the exocytotic vesicles carrying this secretion were budding from a post-Golgi compartment in which the lumen was composed of condensing insulin and soluble C-peptide. These findings can be explained by a model for regulated secretory protein traffic in which direct exocytosis of young granules is stimulated by higher glucose concentrations and vesicle budding from immature granules occurs at lower concentrations. Thus, insulin targeting from immature granules exhibits both regulated and constitutive-like characteristics.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call