Abstract
Fluorescent labelling of proteins enables the determination of their spatiotemporal localization but, sometimes, it can perturb their activity, native localization, and functionality. Spot-tag is a12-amino acid peptide recognized by a single-domain nanobody and could potentially resolve the issues associated with large fluorescence tags due to its small size. Here, using as an example the microtubule motor CENTROMERIC PROTEIN E-RELATED KINESIN 7.3 (KIN7.3), we introduce the spot-tag for protein labelling in fixed and living plant cells. Spot-tagging and detection by an anti-spot nanobody of ectopically expressed KIN7.3 did not interfere with its native localization. Most importantly, our spot-tagging pipeline facilitated the localization of KIN7.3 much more rapidly and likely accurately than labelling with large fluorescent proteins or even immunolocalization approaches. We should, though, note some limitations we have not resolved yet. Spot-tagging is functional only in fixed cells; it is available only as two fluorophores and may create a noisy background during imaging. However, we foresee that, besides the limitations of this method, spot-tagging will apply to many proteins, offsetting activity perturbations and low photon quantum yields of other protein-tagging approaches.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.