Abstract

Human immunodeficiency virus type-1 (HIV-1) membrane fusion is promoted by the formation of a trimer-of-hairpins structure that brings the amino- and carboxyl-terminal regions of the gp41 envelope glycoprotein ectodomain into close proximity. Peptides derived from the carboxyl-terminal region (called C-peptides) potently inhibit HIV-1 entry by binding to the gp41 amino-terminal region. To test the converse of this inhibitory strategy, we designed a small protein, denoted 5-Helix, that binds the C-peptide region of gp41. The 5-Helix protein displays potent (nanomolar) inhibitory activity against diverse HIV-1 variants and may serve as the basis for a new class of antiviral agents. The inhibitory activity of 5-Helix also suggests a strategy for generating an HIV-1 neutralizing antibody response that targets the carboxyl-terminal region of the gp41 ectodomain.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.