Abstract

Removal of high abundance proteins is widely used in sample processing for proteomics studies of blood plasma. Immunoaffinity (IA) depletion is currently the most specific method for performing this step. Historically, IA depletion matrices have been designed to be used with inorganic buffers. However, the presence of salts in depleted samples presents a particular problem, and these must be removed in order to make samples compatible with post-depletion processing. Desalting (dialysis, ultrafiltration, size-exclusion, etc.) usually diminishes sample integrity due to labware associated losses. Moreover, these steps require additional labor, increasing the processing time and cost of analysis. In order to avoid these problems, we have developed an IA method using a volatile buffer that can be removed from depleted samples by lyophilization. This method allows the execution of reproducible and efficient depletion of blood plasma in a semi-automated manner.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.