Abstract
Gel properties of radio frequency (RF) heated egg white dispersions at 27.12 MHz were studied as function of concentration (2.5–2.5 kg/100 kg sample), pH (3–11) and heating time (60–180 s). Egg white dispersions demonstrated a gradual liquid-solid transformation as they denatured and gelled during RF treatment. The critical concentration and heating period for egg white protein denaturation and gelation were found to be 7.5% (w/w) and 150 seconds. The elastic modulus (G′) of RF-heated samples increased with concentration and heating period (temperature), whereas complex viscosity (η*) increased exponentially with concentration. In an alkaline condition, the egg white dispersion did not produce a gel; however, in acidic condition it resulted in a strong gel with significantly (P < 0.05) higher G′. This could be attributed to the high dielectric constant (ε′) and loss factor (ε″) values of acidified samples as compared to the alkaline and control egg white dispersion. Effect of heating rate (1, 5, 10, and 20°C/min) in situ on rheometer plate significantly affected gel rigidity; the RF treated sample rigidity was comparable to samples heated at the rate of 5 and 10°C/min. Differential scanning calorimetry, dielectric measurement, and sodium dodecyl sulfate (SDS) PAGE electrophoresis results were used to confirm gelation behavior during both conventional and RF heating conditions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.