Abstract
The underlying mechanisms of the higher photosynthetic efficiency of cultivated cassava relative to its wild species are poorly understood. In the present study, proteins in leaves and chloroplasts were analyzed to compare the differences among the cultivar SC205, its wild ancestor W14, and the related species Glaziovii. The functions of differential proteins are associated with 10 ontology groups including photosynthesis, carbohydrate and energy metabolism, as well as potential signal pathway. The protein-protein networks among 41 differential proteins showed that PGK1 is a hub protein and protein cross-interactions affected the differentiation of photosynthetic rate. Anatomy patterns and PEPC detection suggested that SC205 has more C4 photosynthesis characteristics than Glaziovii and W14. Finally, a mechanism model of the efficient photosynthesis was proposed based on the remarkable variations in photosynthetic parameters and protein functions in the domestic cultivars.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.