Abstract

The parameters currently used for characterization of nanoparticles, such as size and zeta potential, were not able to reflect the performance of a nanocarrier in the biological environment. Therefore, more thorough in vitro characterization is required to predict their behavior in vivo, where nanoparticles acquire a new biological identity due to interactions with biomolecules. In this present study, we performed in vitro characterization in biological fluids for lipid nanocapsules (LNCs) with varying means sizes (50 nm and 100 nm), different electrical surface charges and different Poly Ethylene Glycol (PEG) compositions. Then, different methods were applied to show the impact of the protein corona formation on LNCs. Even if all formulations attached to plasmatic proteins, a higher thickness of corona and highest protein binding was observed for certain LNC50 formulations. A better knowledge of the phenomenon of protein adsorption over NPs in the plasmatic media is a cornerstone of clinical translation. In fact, after short blood circulation time, it is not the initially designed nanoparticle but the complex nanoparticle bearing its protein corona which circulates to reach its target.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call