Abstract

The evolution of a mating system, and specifically mating frequency, is dependent on the costs and benefits to both sexes of mating once or several times. In butterflies, males transfer a spermatophore that contains both sperm and accessory gland products. Accessory gland substances contain nutrients which, in some species, females use to increase their reproductive output and longevity. Nutrients contained in these packaged ejaculates represent investment by males in reproduction. Consequently, the nutritional composition of spermatophores may vary depending on the mating system. There are two lines of arguments concerning the evolution of the nutrient content of ejaculates. One hypothesis argues that male nuptial gifts evolved in the context of certainty of paternity and ease of finding mates; thus spermatophores of polyandrous males (with lower certainty of paternity and greater ease of finding mates) should contain less protein than those of monandrous males, since more spermatophores are produced on average. The other hypothesis argues that polyandry evolved in the context of maximization of male transfer of nutrients to females, and hence spermatophores of polyandrous males should contain more protein than those of monandrous males. In an attempt to distinguish between these two hypotheses, we determined how protein content of ejaculates varied with the degree of polyandry in nine species of pierid and two species of satyrid butterflies. We found that both relative ejaculate mass and protein content increased with the degree of polyandry. Hence our results are consistent with the view that polyandry has evolved in the context of male transfer of nutrients to females, and provides another example of a male adaptation to multiple mating in butterflies.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call