Abstract

The valorisation of protein-rich residual streams by anaerobic mixed-culture fermentation (MCF) has been barely studied in contrast to carbohydrate-rich wastes. The aim of this work was, therefore, to investigate how protein composition, i.e. the amino acid (AA) profile, affects the individual consumption of amino acids and, consequently, the outcome of the process. Mixed-culture fermentations were performed with two model proteins (casein and gelatin) using continuous and batch reactors at neutral pH values and 25 °C. The acidification was incomplete for both proteins, with casein achieving a higher value than gelatin. Albeit dominated by acetic acid, product spectra were different as well, with n-butyric acid as the second major product for casein and propionic acid for gelatin. The preferential consumption of amino acids was demonstrated, which interestingly depends on protein composition. The previously accepted stoichiometry accurately describes iso and n-butyric acid production, but it fails for propionic, iso and n-valeric acid generation. Overall, this study offers a better understanding of protein fermentation mechanisms, which will help to improve degradation models and to design fermentation processes, based on optimal substrate selection.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call