Abstract

BackgroundProtein–protein interaction networks are receiving increased attention due to their importance in understanding life at the cellular level. A major challenge in systems biology is to understand the modular structure of such biological networks. Although clustering techniques have been proposed for clustering protein–protein interaction networks, those techniques suffer from some drawbacks. The application of earlier clustering techniques to protein–protein interaction networks in order to predict protein complexes within the networks does not yield good results due to the small-world and power-law properties of these networks.ResultsIn this paper, we construct a new clustering algorithm for predicting protein complexes through the use of genetic algorithms. We design an objective function for exclusive clustering and overlapping clustering. We assess the quality of our proposed clustering algorithm using two gold-standard data sets.ConclusionsOur algorithm can identify protein complexes that are significantly enriched in the gold-standard data sets. Furthermore, our method surpasses three competing methods: MCL, ClusterOne, and MCODE in terms of the quality of the predicted complexes. The source code and accompanying examples are freely available at http://faculty.kfupm.edu.sa/ics/eramadan/GACluster.zip.

Highlights

  • Protein–protein interaction networks are receiving increased attention due to their importance in understanding life at the cellular level

  • Data source We study the protein interaction network from the yeast organism since there are abundant high-confidence data sets for its protein interaction network

  • We applied our clustering algorithm on the Collins protein interaction network extracted from the BioGrid data set [20]

Read more

Summary

Results

We construct a new clustering algorithm for predicting protein complexes through the use of genetic algorithms. We assess the quality of our proposed clustering algorithm using two gold-standard data sets

Conclusions
Background
Methods
Results and discussion
Method
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.