Abstract

The enormous size of Protein–Protein Interaction (PPI) networks demands efficient computational methods to extract biologically significant protein complexes. A wide variety of algorithms have been proposed to predict protein complexes from PPI networks. However, it is still a challenging task to detect protein complexes with high accuracy and manageable sensitivity. In this manuscript, a novel complex prediction algorithm based on Network Motif (CPNM) is proposed. This algorithm addresses the role of proteins in the embeddings of network motif. These roles are used to define feature vectors and feature weights of proteins. Based on these features, a neighborhood search technique predict the protein complexes that consider both the inherent organization of proteins as well as the dense regions in PPI networks. The performance of the proposed algorithm is evaluated using various evaluation metrics like Precision, Recall, F-measure, Sensitivity, PPV, and Accuracy. The research finding indicates that the proposed algorithm outperforms most of the competing algorithms like MCODE, DPClus, RNSC, COACH, ClusterONE, CMC and PROCODE over the PPI network of Saccharomyces cerevisiae and Homo sapiens.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.