Abstract

Unlike most ordered molecular systems, globular proteins exhibit a temperature of maximum stability, implying that the structure can be disrupted by cooling. This cold denaturation phenomenon is usually linked to the temperature-dependent hydrophobic driving force for protein folding. Yet, despite the key role played by protein-water interactions, hydration changes during cold denaturation have not been investigated experimentally. Here, we use water-(17)O spin relaxation to monitor the hydration dynamics of the proteins BPTI, ubiquitin, apomyoglobin, and beta-lactoglobulin in aqueous solution from room temperature down to -35 degrees C. To access this temperature range without ice formation, we contained the protein solution in nonperturbing picoliter emulsion droplets. Among the four proteins, only the destabilized apomyoglobin was observed to cold denature. Ubiquitin was found to be thermodynamically stable at least down to -32 degrees C, whereas beta-lactoglobulin is expected to be unstable below -5 degrees C but remains kinetically trapped in the native state. When destabilized by 4 M urea, beta-lactoglobulin cold denatures at 10 degrees C, as found previously by other methods. As seen from the solvent, the cold-denatured states of apomyoglobin in water and beta-lactoglobulin in 4 M urea are relatively compact and are better described as solvent-penetrated than as unfolded. This finding challenges the popular analogy between cold denaturation and the anomalous low-temperature increase in aqueous solubility of nonpolar molecules. Our results also suggest that the reported cold denaturation at -20 degrees C of ubiquitin encapsulated in reverse micelles is caused by the low water content rather than by the low temperature.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.