Abstract

Retinal degenerative diseases, such as retinitis pigmentosa, are characterized by night blindness and peripheral vision loss caused by the slowly progressive loss of photoreceptor cells. A comprehensive molecular mechanism of the photoreceptor cell death remains unclear. We previously reported that heat shock protein 70 (HSP70), which has a protective effect on neuronal cells, was cleaved by a calcium-dependent protease, calpain, in N-methyl-N-nitrosourea (MNU)-treated mice retina. Carbonylated HSP70 is much more vulnerable than noncarbonylated HSP70 to calpain cleavage. However, it was not known whether protein carbonylation occurs in MNU-treated mice retina. In this study, we clearly show protein carbonylation-dependent photoreceptor cell death induced by MNU in mice. Therefore, protein carbonylation and subsequent calpain-dependent cleavage of HSP70 are key events in MNU-mediated photoreceptor cell death. Our data provide a comprehensive molecular mechanism of the photoreceptor cell death.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.