Abstract
Proton (H+) and aluminum (Al3+) toxicities are major factors limiting crop production on acid soils. To study whether salicylic acid (SA) is functional in alleviating protein damage caused by H+ and Al3+ toxicities, an investigation of the antioxidant defense response regulated by SA was carried out on barley (Hordeum vulgare L.) seedlings under H+, Al3+, and combined stresses. It was found that the relative root elongation of seedlings, which grew in the solutions supplemented with SA, was significantly higher than that of seedlings without SA treatment after 24-h treatments with H+, Al3+, and combined stresses. The lesser amount of carbonylated proteins with molecular weights ranging from 14.4 to 97 kD, was accumulated in seedlings treated with SA than that in the seedlings without SA treatment. The higher activities of antioxidant enzymes and lesser content of MDA were observed in seedlings treated with SA compared with the seedlings without SA treatment. Moreover, the nitroblue tetrazolium staining of roots showed that ROS accumulation was decreased by SA treatments. This study suggested that SA could alleviate cell damage caused by H+ and Al3+ toxicities on acid soils by both activating antioxidant defense responses and reducing the contents of carbonylated proteins caused by ROS in barley seedlings.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.