Abstract

Post-translational modification and functional impairment of proteins through carbamylation is thought to promote vascular dysfunction during end-stage renal disease. Cyanate, a reactive species in equilibrium with urea, carbamylates protein lysine residues to form epsilon-carbamyllysine (homocitrulline), altering protein structure and function. We now report the discovery of an alternative and quantitatively dominant mechanism for cyanate formation and protein carbamylation at sites of inflammation and atherosclerotic plaque: myeloperoxidase-catalyzed oxidation of thiocyanate, an anion abundant in blood whose levels are elevated in smokers. We also show that myeloperoxidase-catalyzed lipoprotein carbamylation facilitates multiple pro-atherosclerotic activities, including conversion of low-density lipoprotein into a ligand for macrophage scavenger receptor A1 recognition, cholesterol accumulation and foam-cell formation. In two separate clinical studies (combined n = 1,000 subjects), plasma levels of protein-bound homocitrulline independently predicted increased risk of coronary artery disease, future myocardial infarction, stroke and death. We propose that protein carbamylation is a mechanism linking inflammation, smoking, uremia and coronary artery disease pathogenesis.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.